CHAPTER 3: Applications of the Derivative

Concepts/Skills to know:

- Identify **extrema** (maximum and minimum, absolute and local) of a continuous function *f(x)* on an interval.
- Know the Extreme Value Theorem

If **f(x)** is continuous on a closed interval [a, b] then we are guaranteed absolute extrema, an AbsMax value and an AbsMin value, on [a, b].

- Define critical numbers of f(x) as the value of c in the domain of f(x) where f'(c)=0 or f'(c) does not exist.
- Know that critical numbers **CNs** are the <u>only</u> places where local extrema (LMax or LMin) <u>can</u> appear but <u>not all</u> critical numbers are extrema.
- Find extrema of a continuous function *f(x)* on a closed interval [a, b] by doing the following: find all the critical numbers of *f(x)* in (a, b) evaluate *f(c)* at each critical number *c* in (a, b) evaluate *f(a)* and *f(b)* at each endpoint of [a, b] find the **least** of these values as the **minimum** and the **greatest** of these values as the **maximum**
- Know the Mean Value Theorem
 If *f(x)* is <u>continuous</u> on the closed interval [a, b] and <u>differentiable</u> on the open interval (a, b), then there exists a number *c* in (a, b) such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

- Use the **Mean Value Theorem** to find the point (*c*, *f*(*c*))on the graph of a function *f*(*x*) at which the tangent line has the same slope as the secant line through 2 other points (*a*, *f*(*a*)) and (*b*, *f*(*b*)) of the graph.
- Given a position function *f(t)* (position as a function of time):
 find *average velocity* between two positions and their associated times, (*t₁, f(t₁*)) and (*t₂, f(t₂*)) and
 find the time *t* and position *f(t)* at which the *instantaneous velocity* is equal to this average velocity.

Know the **First Derivative Test** When *c* is a critical number for *f(x)* and *f(x)* is <u>continuous</u> at *c* and <u>differentiable</u> on an open interval and *c* is at an open endpoint:

if f'(x) changes from positive >0 to negative <0, then f(x) changes from increasing \uparrow to decreasing \downarrow $\therefore f(c)$ is a LMax of f(x)

if f'(x) changes from negative <0 to positive>0, then f(x) changes from decreasing \downarrow to increasing \uparrow $\therefore f(c)$ is a LMin of f(x)

if f'(x) does not change in sign, then either f(x) stays increasing \uparrow or f(x) stays decreasing \downarrow $\therefore f(c)$ is not a local extrema of f(x)

- Use **First Derivative Test** to find the closed interval where the function f(x) increases \uparrow or decreases \downarrow and use this information to classify the local extrema of the function f(x) and sketch graph of f(x).
- Know the Second Derivative Test
 - When f(x) is differentiable on an open interval containing a critical number c and f'(c)=0: if f''(c)<0, then f'(x) is decreasing \downarrow , **C**oncavity is **D**ownward and f(c) is a LMax of f(x)if f''(c)>0, then f'(x) is increasing \uparrow , **C**oncavity is **U**pward and f(c) is a LMin of f(x)
- Identify a **point of inflection** where the concavity of a function switches from upward to downward or from downward to upward.
- Look for points of inflection where *f''(c)*=0 or *f''(c)* does not exist.
 If *f''(c)* DNE, then use open intervals and the 2nd Derivative Test to look for concavity switch.
- Use the **Second Derivative Test** to find concavities and their open intervals, local extrema and their coordinates, and points of inflection for the function *f(x)*.
- Find all local extrema of **sine** and **cosine** function for the closed interval $[-2\pi, 2\pi]$.